

Approximations- und Online-Algorithmen

Dr. Hans-Joachim Böckenhauer Dr. Dennis Komm

courses.ite.inf.ethz.ch/approx_online_alg_22

Übungsaufgaben – Blatt 4

Zürich, 17. März 2022

Aufgabe 6

In der Vorlesung wurde für das allgemeine Rucksackproblem ein FPTAS vorgestellt. In der Analyse haben wir Kosten einer optimalen Lösung T_{opt} für die Eingabe I sehr grob durch

$$c_{\text{max}} \leq \text{cost}(T_{\text{opt}}, I) \leq n \cdot c_{\text{max}}$$

abgeschätzt und konnten damit zeigen, dass die Laufzeit höchstens kubisch in n ist. Wir können den Algorithmus und die Analyse so anpassen, dass wir ein FPTAS erhalten, dessen Laufzeit höchstens quadratisch in n ist. Dazu verwenden wir (ohne Beweis dieser Tatsache), dass in Zeit $O(n^2)$ eine 2-Approximation für das allgemeine Rucksackproblem berechnet werden kann. Bezeichne α nun die Kosten der so berechneten 2-Approximation. Dann gilt offensichtlich

$$\alpha \le \cot(T_{\text{opt}}, I) \le 2\alpha.$$
 (1)

Entwerfen Sie damit ein FPTAS für das Rucksackproblem und beweisen Sie, dass seine Zeitkomplexität quadratisch in n ist.

Bemerkung: Einen 2-approximativen Algorithmus mit Laufzeit $O(n^2)$ für das allgemeine Rucksackproblem erhält man beispielsweise wie folgt. Wir können das vorgestellte PTAS für das einfache Rucksackproblem auf das allgemeine Rucksackproblem anpassen, indem wir die Greedy-Erweiterung nach dem Verhältnis von Kosten zu Gewicht vornehmen. (Natürlich muss hier auch die Analyse entsprechend angepasst werden.) Verwendet man dieses neue PTAS für $\varepsilon = 1$, so erhält man dann eine 2-Approximation mit einer Laufzeit von $O(n^{\lceil 1/\varepsilon \rceil + 1}) = O(n^2)$.

Aufgabe 7

- (a) Sei $U \in \mathcal{NPO}$ ein Optimierungsproblem, bei dem die Menge $\{\cos(y) \mid y \in \mathcal{M}(x)\}$ der möglichen Kosten einer Lösung zu einer Instanz x nur aus positiven ganzen Zahlen besteht und für die Kosten der optimalen Lösung Opt zu einer Instanz x gilt, dass $\cos(\operatorname{Opt}(x)) \leq p(|x|, \operatorname{Max-Int}(x))$ für ein Polynom p.
 - Zeigen Sie, dass es kein FPTAS für U geben kann, wenn die Schwellenwertsprache $Lang_U$ stark \mathcal{NP} -schwer und $\mathcal{P} \neq \mathcal{NP}$ ist.
- (b) Finden Sie ein stark \mathcal{NP} -schweres Problem, für das es ein FPTAS gibt.

Hinweis: In der Vorlesung wurde gezeigt, dass das TSP \mathcal{NP} -schwer bleibt, wenn die Kantenkosten auf 1 und 2 beschränkt werden.

10 Punkte

Abgabe: Am 17. März zu Beginn der Übungsstunde.