

Approximations- und Online-Algorithmen

Dr. Hans-Joachim Böckenhauer Dr. Dennis Komm

courses.ite.inf.ethz.ch/approx_online_alg_22

Übungsaufgaben – Blatt 12

Zürich, 19. Mai 2022

Aufgabe 18

In der Vorlesung wurde das k-Server-Problem auf der Linie besprochen, bei dem k Server auf der reellen Zahlenachse zwischen 0 und 1 bewegt werden. Der vorgestellte Online-Algorithmus DC (Double-Coverage) kann analog auf einem Pfadgraphen betrachtet werden, wobei er denselben kompetitiven Faktor k erreicht. In dieser Aufgabe wollen wir uns nun mit dem k-Server-Problem auf dem Kreisgraphen G_N mit N Knoten beschäftigen. Dabei sind die Kosten aller Kanten von G_N gleich 1.

Betrachten wir den folgenden randomisierten Online-Algorithmus CIRC, der k-Server auf einem Kreisgraphen löst.

Eingabe: Kreisgraph $G_N = (V, E)$ mit

- $V = \{v_1, \dots, v_N\}$ für $N \ge k$,
- $E = \{\{v_i, v_{(i+1)}\} \mid i = 1, \dots, N-1\} \cup \{v_N, v_1\},\$

und eine Sequenz $I = (x_1, \dots, x_n)$ mit $x_i \in \{1, \dots, N\}$ für alle i.

Schritt 1. Wähle zufällig gleichverteilt eine Kante $e_{\text{split}} \in E$, an welcher G_N "aufgeschnitten" wird.

Schritt 2. Führe den Algorithmus DC auf dem so entstandenen Pfad aus.

Beachten Sie, dass dem Gegenspieler die Kante $e_{\rm split}$ nicht bekannt ist.

Zeigen Sie, dass CIRC im Erwartungswert 2k-kompetitiv ist.

10 Punkte